Tag Archive for: Educational Technology

Photo credit: Sustainable Futures

980 million people traveled internationally in 2010, a 4% increase over the previous year, and forecasts expect 1.6 billion tourists by the year 2020. Travel & Tourism as a sector accounts for 258 million jobs globally, and provides crucial opportunities for investment, economic growth, and fostering cultural awareness.  Tourism can also be a powerful tool for tackling major challenges such as conservation and poverty alleviation.

But how do environmentally and socially conscious travelers navigate the complex differences between ecotourism, sustainable tourism, socially responsible tourism and the other myriad forms of traveling responsibly?

Ecotourism vs Sustainable Tourism

Industry consensus agrees ecotourism is more focused on ecological conservation and educating travelers on local environments and natural surroundings, whereas sustainable tourism focuses on travel that has minimal impact on the environment and local communities. Ecotourism is a form of tourism, or a category of vacation similar to beach, adventure, health, or cultural, while the concept of sustainability can be applied to all types of tourism.

As established by The International Ecotourism Society (TIES) in 1990, ecotourism is “Responsible travel to natural areas that conserves the environment and improves the well-being of local people.” Another widely cited definition of ecotourism is “purposeful travel to natural areas to understand the culture and natural history of the environment; taking care not to alter the integrity of the ecosystem; producing economic opportunities that make the conservation of natural resources beneficial to local people.”

The Global Sustainable Tourism Council (GSTC) is a global initiative dedicated to promoting sustainable tourism practices around the world. GSTC and its global members of UN agencies, global travel companies, hotels, tourism boards and tour operators follow the Global Sustainable Tourism Criteria. The 23 criteria focus on best practices to sustain natural and cultural resources, maximize social and economic benefits for the local community, and minimize negative impacts to the environment.

Currently there is no internationally accredited body charged with overseeing the standards, monitoring and assessment, or certification for the ecotourism or sustainable tourism industries. Without an established standard it is easy to be confused by organizations that greenwash services and offerings as “environmentally friendly.” Others argue that ecotourism is an oxymoron, as travel implicitly entails activities that are detrimental to the environment. Planes, trains and automobiles use harmful fossil fuels that emit CO2, and forestland is often cleared for roads and railways.

Ecotourism and Sustainable Tourism in Action

Photo Credit: Visit Costa Rica

Costa Rica was a pioneer in ecotourism and exemplifies how tourism can be a key pillar of economic development policy. Costa Rica is now the premiere destination for ecotourism, and in 2010 tourism contributed 5.5% of the country’s GDP. Jordan serves as another model of successfully integrating conservation and socio-economic development. Ecotourism generated $2.1 million in 2010, and Jordan’s Royal Society for the Conservation of Nature has received several global awards for its success in alleviating poverty and creating employment for local communities, in combination with integrating nature conservation.

Myriad sites offer options for tours and hotels that cater to a more environmentally friendly and sustainable type of traveling experience. The New York Times travel section allows viewers to search potential destinations using ecotourism as a criteria, and Condé Nast Traveler highlights Ecotourism and Sustainable Travel under Expert Travel Tips.

The Earthwatch Institute, organizes trips where travelers work alongside scientists and explorers on field expeditions and Sierra Club’s travel arm Sierra Club Outing allows environmentalist to learn something on vacation and inflict minimal harm on the surrounding environment.

At the industry level, hotels and resorts are taking on sustainability commitments that focus on recycling, decreasing water and energy usage, reducing greenhouse gas emissions,and environmentally friendly design. Many in the industry show a commitment to a holistic approach to sustainability which includes  the construction of Leadership in Energy & Environmental Design (LEED) certified buildings, providing eco-friendly and organic food and wine selections, and rewarding guests who make “green choices.” Marriott, which boasts 2,800 hotels worldwide, offers guests hotel points or vouchers for the hotel restaurant should they choose to not having linens and towels washed daily.

Understanding the difference between sustainable tourism and ecotourism educates travelers on the significant impact their travel decisions have on the environment, economy and local communities they visit. Participating in sustainable tourism, or more specifically ecotourism vacations, means travelers can contribute to development and conservation efforts, while enjoying themselves on vacation.

Photo Credit: eddataglobal.org

The Early Grade Reading Assessment (EGRA), a tool used in over 50 low-income countries and 70 languages to measure students’ progress toward learning to read, is going digital through its new Tangerine™ platform.  The mobile software application designed by RTI International specifically for recording student responses during the administration of the EGRA can now be used by organizations and governments to simplify preparation and implementation of fieldwork, reduce measurement and data entry errors, and eliminate manual data entry.

The EGRA is a 15-minute test administered orally to students in the early grades of primary school.  It was designed by RTI International under USAID’s EdDAta II project to help educators in low-income countries break the pattern of illiteracy among their poor. Since 2006, the EGRA has been used to evaluate students’ foundation literacy skills, including pre-reading skills like phonemic awareness and listening comprehension, which have been shown to predict later reading abilities. Using test results, education ministries and their donor partners are then able to identify and address learning barriers to develop strategies to improve literacy.

But now Tangerine has taken the paper-based EGRA tool to a new level of efficiency. The open-source electronic data collection software can be used on mobile computers, including netbooks, tablet computers and smartphones to enable assessment administrators to:

  • Simplify the preparation and implementation of field work
  • Reduce measurement and data entry errors
  • Eliminate costly, time-consuming manual data entry
  • Provide rapid turnaround of results

Through these advantages and the analysis of results of student populations, policy makers and organizations can respond even sooner to challenges within an education system.  They can also develop appropriate strategies to improve early-age literacy rates, such as improving teacher training programs and curriculum materials.

In addition to the Tangerine EGRA software, RTI developers are currently developing two new tools that can be used by teachers themselves in their own classrooms:

  • Tangerine:Class – a version of Tangerine tailored specifically for teachers to assist in developing and administering classroom based math and reading assessments and interpreting results to inform their instructional practice.
  • Tangerine:Teach – a tool that can interpret results from Tangerine:Class to identify and develop learning materials to address student weaknesses.

To learn more about Tangerine:

The Edutech Debate posted a blog, ICT and the Early Grade Reading Assessment: From Testing to Teaching by RTI’s Carmen Strigel, which offers an in-depth analysis of Tangerine’s application and cost benefits.

There is also a brief video of EGRA being administered using Tangerine.

 

Photo Credit: www.dailycontributor.com

Omar, 19 years old and living in an urban slum in India, is an early mobile internet user who repairs mobile phones in his brother‘s store. “This is magic in my palms,” he says valuing the weight of his mobile phone, not only in his hands, but in his day-to-day life. “God knows what I would do without this. I download songs and listen to them all day, I download movies and watch them in the night when I get back home, I play games in between servicing client, I change my internet plans as and when I come across a great one that gives me the most for the least.”

Omar is certainly not the only teenager in his slum who is fascinated with mobile technology. It’s this appreciation for ICT and its various uses for finding comfort — a way of managing and building personal technology infrastructures as an important element in conducting one’s own life — that Microsoft researchers wanted to portray in a new report, Anthropology, Development and ICTs: Slums, Youth and the Mobile Internet in Urban India. The report aimed to bring awareness to the ICT for development (ICT4D) community of the important insights that be gained from anthropological studies within an understanding of what drives a specific user population to adopt technologies in specific ways: even if the latter is only for entertainment purposes.

Researchers observed how twenty underprivileged teenagers living in a slum used ICT in their day-to-day lives by employing a variety of qualitative methods, including open-ended interviews, observations of community life, and semi-structured baseline surveys. They focused their findings on:

1) Investigating everyday entry points for internet use

2) Identifying ways the internet is understood, accessed, used and shared in multiple ways among the user population

3) Qualifying the social paths sustaining the persistence of internet use among teenagers in a constrained infrastructural environment — specifically that of an urban slum.

The report offers a fascinating anthropological view of how ICT could, and perhaps should, be seen by the ICT4D community:

“If constrained technology environments such as urban slums or how youth use ICTs are legitimate interests for ICTD research, such concerns could pave way for a subtle yet vital exchange between the domains of anthropology and development with the aim to expand a utilitarian notion of ICTs and their role in human progress.”

With so much focus being given to ICT for education initiatives, this leads us to wonder: Should technology be introduced into communities where ICT has not yet been adopted? Or is it better that we first observe how technology is already being used, such as use of  mobile phones, and structure our education programs around these pre existing uses? The report suggests the latter and encourages ICT4D developers to consider all of the ways technology is already being used even if it doesn’t have the direct effects that we anticipate or fit a preconceived definition of “development”.

“Indeed, this may require us to broaden our view of how we think about what underlies a good ICTD research project and how we view a range of human behaviors as incremental to development. Rather than using the internet to search for educational material, the youth in our study search for music and Bollywood teasers. These are hardly developmental in any conventional sense, but more akin to behaviors of youth in any part of the globe! No doubt what begins as entertainment can lead to more serious activities.”

The report is certainly a welcome and valuable resource to developers in the ICT4D community.  The full report can be accessed here.

 

Photo credit: www.vaccinenewsdaily.com

With the rainy season off to an early start in Haiti this spring, can technology help stave off the rising cholera epidemic?

That’s what several international aid and health organizations are considering now that the advantages of ICT — innovation, efficiency, fast-response time — are needed to meet the impending rainy season which promises to bring flooding and ultimately more cases of cholera.  Since the earthquake in 2010, more than 530,000 Haitians have fallen ill with cholera, and more than 7,000 have died — staggering numbers when considering the amount of international aid and health projects that have descended upon the country within the past two years.  ICT in all of its forms and all that it enables — low-cost mobile devices, open data and access, social media — could improve the response time and efficiency of health initiatives in the cholera crisis if properly implemented.

One example of how ICT is already being utilized to prevent more cases of cholera is a new vaccine campaign by GHESKIO, a health organization based in Port-au-Prince, Haiti, in collaboration with Partners in Health, a non-profit healthcare organization that is well known for their efforts against the spread of cholera.  In order to identify recipients for the vaccines as efficiently and quickly as possible within a country where travel is difficult, community health workers went door-to-door collecting information about the potential recipients via smartphones. The information was then aggregated into a database to locate and distribute the vaccines to the 100,000 chosen recipients — a process that has just begun after a series of delays.

Utilizing mobile technology to combat the spread of cholera is not a new concept to Partners in Health.  In a campaign started just last year, community health workers have been using specially programmed phones to help track information about cholera patients in isolated communities throughout Haiti’s Central Plateau – an important step in gathering up-to-date infection data that could prevent more deaths.  “Receiving real-time cholera information from community health workers is crucial,” says Cate Oswald, Partner in Health’s Haiti-based program coordinator for community health.  “We need accurate and up-to-date reports in order to best prevent more cases and respond to quick spread of the epidemic.”

Social media has also played a large role in detecting and tracking the incidence of cholera outbreaks.  A study released in January by the American Journal of Tropical Medicine and Hygiene reported that Twitter actually provided data that was faster and more accurate in some cases than traditional methods in tracking the cholera epidemic.  Not only does social media provide a fast response time, it “is cost-effective, rapid, and can be used to reach populations that otherwise wouldn’t have access to traditional healthcare or would not seek it”, said Rumi Chunara, a research fellow at HealthMap and Harvard Medical School in the US, and lead author of the study.

Image from haiti.mphise.net

HealthMap, an automated electronic information system for monitoring, organizing, and visualizing reports of global disease outbreaks according to geography, time, and infectious diseases, has been an important tool in helping inform Partners in Health and other health organizations about the spread of cholera in Haiti.  Not only does HealthMap track the spread of cholera, it also identifies new safe water installations, health facilities, cholera treatment centers, and emergency shelters.

Photo credit: Katie Marney/The McGill Daily

Are schools in Latin America and the Caribbean (LAC) network ready?  If so, what does it mean for improving the equity and quality of education in that part of the world?

This is a complicated question, no doubt, and one that is going to be asked more frequently with the introduction of the new Broadband Partnership of the Americas which promises to provide connectivity to schools that generally have been considered disconnected from the rest of the world.  Moreover, this question seemingly ignores the unique cultural context and infrastructure of each country within the LAC region.  Providing internet access in schools is just one important variable in a complex equation that the Information and Communication Technology for Education (ICT4E) community struggles to understand when attempting to integrate technology into the classroom.  Does connectivity + ICT devices + digital content = better education?  Many would vehemently argue no when considering differences in quality and methods of delivery.

But the LAC region on the whole appears to have a different equation altogether and one that seemingly receives less attention than other “developing” parts of the world, such as parts of Africa that tend to be the testing ground for many new ICT4E initiatives.  When Latin America is mentioned in the ICT4E community, many often think of recent projects like OLPC deployments in Peru or Seeds of Empowerment’s initiatives in Argentina and Uruguay.  But these are mainly device-based programs and, without increased internet coverage in the region, many of the valuable open educational resources and distance learning opportunities available through internet access remain out of reach.

Internet Access in Schools from the World Economic Forum

According to the World Economic Forum’s (WEF) new 2012 Global Information Technology Report, a comprehensive assessment of the preparedness of economies to leverage the networked economy, LAC’s Internet access in schools ranks well below its developed neighbors (see map on the right).  This is just one of many factors, along with education quality, level of adult literacy, and rate of secondary education enrollment, that the WEF considers when determining the “network readiness” of a country.

“Network readiness”, as defined by a complex framework which translates into the Network Readiness Index, is comprised of four subindexes that measure the environment for ICT; the readiness of a society to use ICT; the actual usage of all main stakeholders; and, finally, the impacts that ICT generates in the economy and society.  The report found that LAC’s network readiness ranking is lagging far behind “developed” countries for a number of reasons:

“Although the region is vast and heterogeneous, three shared reasons for this lag can be identified: these countries all exhibit an insufficient investment in developing their ICT infrastructure, a weak skill base in the population because of poor educational systems that hinder society’s capacity to make an effective use of these technologies, and unfavorable business conditions that do not support the spur of entrepreneurship and innovation.  Addressing these weaknesses will be crucial for improving the region’s competitiveness and shifting its economies toward more knowledge-based activities.”

Network Readiness Index from the World Economic Forum

Addressing the weaknesses in the educational systems throughout the LAC region creates a complicated question when considering the role that ICT4E plays:  How can technology be used effectively to improve an education system if the current system’s weaknesses and lack of technology expertise prevent technology from being integrated into the classrooms in the first place?  Obviously, a country’s network readiness — or even ICT4E readiness — is complex and addressing it requires a multifaceted approach.  For schools in the LAC region, improving internet access and expanding broadband technologies will address at least one aspect of the digital divide in education.

More information about ICT4E policies in LAC:

Photo Credit: www.camara.ie

USAID’s Educational Quality Improvement Program 3 (EQUIP3) has released a new digital toolkit that will empower local partners to successfully implement youth employability programs. The Youth ICT Employment Training & Placement Toolkit provides guidance and support to partner institutions in the design of these programs and presents profiles of jobs in three sectors — ICT, health, and agriculture — which were identified as growth industries with a high potential for employing youth in Africa.

EQUIP3, a program led by the Education Development Center (EDC), partnered with the International Youth Foundation (IYF) to assess the labor markets, consult with numerous stakeholders in Kenya and Rwanda, and identify viable youth livelihood opportunities in the three sectors.  By gathering quantitative and qualitative information on the needs, interests, and capacities of employers, youth, and others, these assessments identified specific ICT-related occupations that offer significant entry-level employment or entrepreneurial opportunities for disadvantaged youth in the target countries.

The Kenya and Rwanda country assessments found numerous employment and entrepreneurial opportunities for youth who have basic to advanced ICT skills, such as in hardware maintenance and repair, network maintenance, multimedia production, and database management.  Through these findings, the development team identified the agriculture and health sectors as those which ICT skills have the most potential.  In the agricultural sector, for instance, youth can use ICT skills to increase the efficiency of farms, shops, and suppliers.  In the health sector, opportunities for youth exist in supporting health management information systems, among other opportunities.

The toolkit can be accessed online, in PDF, or in printed form for those without access to the Internet.  Each sector profile provides program managers with detailed information on how to establish training programs that will impart to youth the skills required to secure formal employment or to start their own businesses.

Each profile includes:

  • A brief job description
  • The employment outlook
  • The “big picture” training considerations (recommended training location, target beneficiaries, average length of course, maximum class size)
  • Desired training outcomes
  • Student prerequisites for training (e.g. English level, critical thinking skills, basic numeracy skills)
  • Qualifications to look for in trainers
  • Specific curriculum and resources
  • The technology resources needed to provide training
  • Optimal instructional methodologies
  • Internship and job placement strategies
  • Additional resources, including links to online resources

The development team worked with NGOs and the government in each country to identify the needs of out-of-school youth, investigate job opportunities in the private sector, and identify pre-existing training materials.  The research and consideration for country context that has gone into the design of the toolkit has made it a promising resource in providing youth with the skills necessary to participate in the emerging job market of technology-based positions.  Moreover, the development team designed the toolkit to be able to evolve with the emergence of new open source resources and different ICT-related employment opportunities within the three sectors’ value chains to enhance the curriculum and ensure the project’s sustainability.

And this is just the beginning — consider it the 1.0 version of this training resource.  The development team is looking to expand the toolkit to encompass other sectors and are already investigating examples of ICT usage in Senegal, Kenya, and Rwanda.


Image from Wikipedia

Over the last decade, Wikipedia has become as ubiquitous a research tool for the modern American student as the encyclopedia was for their parents — though even that has changed now that the Encyclopedia Britannica has gone completely digital.  But Wikipedia has remained largely inaccessible for students in remote corners of the world where English, German, French and Dutch are not spoken — languages that receive the most Wikipedia coverage.

Wikidata, a new project from the Wikimedia Foundation, plans to change that by creating a free knowledge base about the world that can be read and edited by humans and machines alike, making updating and translating processes easier and more efficient.  Through this new project, Wikipedia will provide data in all of the languages of other Wikimedia projects.  Announced in February at the Semantic Tech & Business Conference in Berlin, the new project promises to be groundbreaking in both its approach and scope of its audience:

“Wikidata is a simple and smart idea, and an ingenious next step in the evolution of Wikipedia,” said Dr. Mark Greaves, Vice President of the Allen Institute for Artificial Intelligence.  “It will transform the way that encyclopedia data is published, made available, and used by a global audience.  Wikidata will build on semantic technology that we have long supported, will accelerate the pace of scientific discovery, and will create an extraordinary new data resource for the world.”

Photo Credit: www.thehindu.com

And that’s including parts of the world that have long been left out of Wikipedia coverage because of language barriers and the digital divide. Though the project is still in its initial stages, the first phase of the project will take place over the next several months as the development team creates one Wikidata page for each Wikipedia entry for over 280 supported languages.  By using a unified data management system, data entered in any language will immediately be available in all other languages and editing in any language will be possible and encouraged by the projects completion, slated for March 2013.

 

The initial development of Wikidata is being funded in part by the Allen Institute for Artificial Intelligence and the Gordon and Betty Moore Foundation through its Science program, both of which see enormous potential for Wikidata and the role it will play in creating common formats for online data:

“It is important for science,” said Chris Mentzel, Gordon and Betty Moore Foundation science program officer.  “Wikidata will both provide an important data service on top of Wikipedia, and also be an easy-to-use, downloadable software tool for researchers, to help them manage and gain value from the increasing volume and complexity of scientific data.”

Wikipedia’s development team is not new to revolutionary ideas and raising standards.  Jimmy Wales, one of the founders of Wikipedia and the Wikimedia Foundation, was quoted several years ago for his vision of “a world in which every single person on the planet is given free access to the sum of all human knowledge.”  For students in parts of the world where online educational resources in their native language are far and few between, Wikidata promises to take one step closer to this goal.

Image from ypia.org.za

Many in the aid and ICT4E community know NEPAD — the New Partnership for African Development (NEPAD) — and probably remember the launch of the e-School Initative, first announced during the Africa Summit of the World Economic Forum in June 2003.  As part of the overarching objective of the NEPAD program to enhance Africa’s growth, development and participation in the global economy, the e-School component involves a complex implementation strategy involving a multi-country, multi-stakeholder, and multi-stage approach to introduce ICT use and support to 600,000 schools across Africa.  But now, close to ten years after the initiative was first introduced, what progress has it made?

That’s what participants and leaders of the NEPAD e-School Initiative discussed when they gathered in Accra, Ghana earlier this week for the two-day NEPAD e-School Regional ECOWAS Conference.  Reverend Emmanuel Dadebo, Head of the Teacher Education Division of Ghana Education Service, led the discussion and press event, emphasizing the project’s need for a business plan that promotes private sector investment by introducing a new Private Public Partnership (PPP) model.

The conference comes after five years of discussion and debate concerning the key findings made during the initial phase of the e-School Initiative — the “NEPAD e-Schools Demo”. The purpose of the Demo was to accrue a body of knowledge, based on real-life experiences of implementing ICT in schools across the African continent, in order to inform the rollout of the NEPAD e-Schools Initiative. The program was implemented in six schools in each of 16 countries across Africa through partnerships that involved private sector consortia, the country government and the NEPAD e-Africa Commission (eAC), which is responsible for the development and implementation of the NEPAD ICT program.

Photo Credit: computersforcharities.co.uk

Though various stakeholders and members of the aid community consider the Demo successful in some ways, like introducing ICT hubs into rural communities, most agree that it remains unsustainable in its current form.  A report released by infoDev and the Commonwealth of Learning (COL) back in 2007 entitiled “The NEPAD e-Schools Demonstration Project: A Work in Progress”, highlights the realization of this challenge within the early stages of the Demo and stressed the need for dialogue between all stakeholders:

“The expectations that implementation of the Demo would occur within a few months of it being announced in the participating countries, and, that a Business Plan would be developed to address sustainability and future rollout, were not met, and explanations for the delays were not effectively communicated.  The disappointment and cynicism that resulted in some of the participating countries underlines the oft-learned rule of project management: Communicate! Communicate! Communicate!”

Like many development projects of this kind, and on such a large scale, lessons like these take time to learn and often come from trial and error.  Shafika Isaacs, the founding executive director of SchoolNet Africa and a member of the monitoring and evaluation team for the report concluded saying this:

“Never before has there really been a program that mobilised national government participation and leadership at the official continental level in the way the NEPAD e-Schools vision has.  Further, it has brought the private sector into partnerships that, while experiencing growing pains, has mobilised resources in a way that few other projects have been able to do. And there is much yet to learn about doing this in an optimal way.”

Exactly how much has been learned between 2007 and now, has yet to be seen.  Several news articles have claimed that the program has already benefited several schools in Ghana and according to a statement given in Accra at the e-Schools conference, Ghana will launch the next phase of NEPAD e-Schools later this year.  The program’s methods of monitoring and evaluating these benefits and ensuring effectiveness and transparency are unclear.  However, with more buy-in from the private sector and the introduction of a new business model, it’s clear that some progress is being made and a more sustainable future for the e-Schools Initiative could be within reach.

Photo Credit: hsctoolkit.bis.gov.uk

Of all of the new innovations in ICTs — mobile apps and games, open educational resources (OER), and everything else related to ICT for education (ICT4E) — which will be the most important in the next five years?

That’s just one of the questions that the new NMC Horizon Report: 2012 Higher Education Edition aims to answer.  The report was released last month by the New Media Consortium (NCM), an international community of experts in educational technology, and Educause, a nonprofit association which aims to advance higher education by promoting intelligent use of information technology.

The report charts the path of emerging technology innovations, trends, and challenges in higher education from around the world to highlight which have the most potential for impact within the next several years.  It’s the ninth edition of a decade-long research project and over 450 technology and education experts from more than 30 countries have contributed to the research, discussions, and conclusions made in the report since the NMC Horizon Project began in 2002.

What to expect within the next 12 months:

  • Mobile Apps

As the fastest growing component of mobile technology, students are using these for formal and informal learning, teachers are using them to be more efficient and innovative in their classrooms, and both are enabling apps for research, ePublishing, recording, etc.

  • Tablet Computing:

Now preferred in a growing number of classrooms in the developed world, tablets cause less disruption than mobile phones, can be easily stowed and used for field and lab work, and allow one-to-one computing opportunities, usually at an affordable price.

2-3 Years:

  • Game-Based Learning

This has been a fast-growing field within recent years and there are now more studies and reports that offer quantitative data on its effectiveness in education. The report highlights educational gaming as an important tool for fostering student collaboration and engagement in the learning process.

  • Learning Analytics

A valuable tool for teachers, this allows educators to record, process, and track student achievement and engagement. This data can lead to curricula revision, teaching assessments, and improved teaching methodologies.

4-5 Years

  • Gesture-Based Computing

This enables students to learn by doing. From touchscreens to voice interpretation software, students use gesture-based computing to expand their ICT-enabled learning opportunities to encompass embodied learning. The report expects that this technology will soon develop to allow numerous students to use large multi-touch displays for collaborative learning.

  • The Internet of Things

This emerging technology provides online data about an object’s unique characteristics and allows students to record, study, and learn about the physical world around them.  The potential benefits for this technology in education are still being explored.

Key Trends:

  • A rise in student expectations to be able to work and study whenever and wherever they want
  • More advances in cloud-based technologies and applications
  • An increase in student collaboration as project-structures change with new technologies
  • Teachers will continue to be challenged and redefine their roles with the addition of new resources and relationships
  • New models of learning, like hybrid and online learning, will change education paradigms
  • Teachers will use more active and challenge-based learning methods

Photo credit: www.latestdigitals.com

Current Challenges:
  • Traditional Models of teaching are being challenged by new ones enhanced by technology; often the two compete to find a balance that ensures the quality of education.
  •  Research, authoring, and publishing methods are expanding with the growing use of social media in research; many academics still do not accept these new methods as valid.
  • Demand for digital media literacy continues to rise in work and educational settings, however it is still rare in teacher education and training.
  • Emerging technologies are slow to be adopted by teachers on a large scale because of their conflict with traditional teaching models and their self-perceived role and comfort level.
  • University Libraries are challenged with determining how to categorize and support scholarly resources made available through social media and open content, and how to evolve with this growing trend.

For further reading, each section of the report concludes with a list of resources and examples of how the technology is already being used in higher education.  In addition, these and additional resources can be found in an online database on the NMC Horizon Project Navigator website.

 


Photo Credit: TodayHeads.com

Remember “Hooked on Phonics“?  The famous infomercials from the 90’s that promised an educational video series could improve children’s reading scores through phonic-based learning methods?

GraphoGAME, a digital-based phonics learning game developed in Finland, is proving to be just as effective for children in low-income countries and as easily accessible through an array of ICT devices.  Developed at the Agora Human Technology Center of the University of Jyväskylä in collaboration with the Niilo Mäki Institute, the game has already been developed in numerous languages — Bantu Languages in Africa, English, Spanish, Chinese, Arabic, Hindi, etc. — to improve literacy where access to sources of high-quality education is limited.

GraphoGAME promotes literacy development by teaching children to form letter-sound associations instead of simply memorizing letter symbols and names.  By using fun and entertaining activities, the child becomes engaged and progresses as the game becomes increasingly difficult according to their progress.  It starts by introducing basic sounds and gradually progresses to complicated sound combinations.

The research team and developers didn’t design GraphoGAME to replace the role of teachers in literacy learning, but instead promote its value as a powerful learning aid when placed in an educational setting where there are challenges to literacy development.  For example, it would be a valuable resource in classrooms where teachers use rote learning — often considered a barrier to meaningful learning and is pervasive throughout the developing world.

The idea for GraphoGAME was introduced in the early 1990’s after Finnish researcher, Heikki Lyytinen, conducted a series of studies on children with dyslexia to identify predictors that could anticipate problems in literacy education.  Using these findings and with funding from the Finnish Ministry of Education and Culture, the research team developed the first version of the educational game for children in Finland, and in 2011 expanded the project to address illiteracy in other countries.

Image from GraphoGAME

To support the expansion, the GraphoGAME developers created a larger project called the Grapho Learning Initiative which is divided into four focus areas: GraphoGAME, GraphoWORLD, GraphoREAD, and GraphoLEARN.

GraphoWORLD is a network of university professors and researchers from around the world who are working together to develop non-commercial technologies to improve literacy.  In order to address each country’s unique orthography (system of spelling) and general learning environment, researchers conduct studies and assessments to support the effictiveness of GraphoGAME within that particular country.

GraphoREAD is a promising research project on eReading platforms and the business models to support them within low-income countries. This is a valuable addition to the GraphoGAME project and the research team is working to ensure that high-quality reading materials are made available for children developing literacy skills.

GraphoLEARN is an entity that will be created after the GraphoREAD research is completed and analysed to support the production of the learning materials identified in the research.

There are a number of videos online that can offer a brief introduction to the format of the games and the educational philosophy behind them.  You can also go to the GraphoGAME website to try some of the games yourself.

Copyright © 2020 Integra Government Services International LLC