Tag Archive for: mobile

Photo Credit: M-Farm

M-Farm is an award winning mobile solution for agribusinesses and farmers currently being piloted in Kenya. It is an SMS and web-based application focused on improving weaknesses in the value chain. It is a transparency tool for Kenyan farmers to get information pertaining to the retail price of their products, buy their farm inputs directly from manufacturers at favorable prices, and find buyers for their produce.

Why M-Farm?

The M-Farm solution was developed based on the marketing challenges of rural farmers in Kenya. Smallholder farmers unaware of the market of the various commodities, produce in excess and are faced with the problem of getting the worth of their produce. Poor information on farm inputs and lack of access to these inputs such as fertilizer, seed, agrochemicals and other equipments are huge obstacles to increasing farmers’ productivity. The inability of the farmers to transport their produce to regional markets after harvesting also leads to the exploitation by middlemen who offer meager prices for the produce, and even delay payments for the commodities.

M-Farmers’ Approach

The M-Farm solution aims at giving farmers a voice by connecting them with each other in a virtual space for access to affordable farm inputs and also be able to sell their produce collectively. Specifically, the solution works through:

  • Price Information: M-Farm enables farmers to inquire current market prices of different crops from different regions and/or specific markets
  • Group Buying: M-Farm is able to aggregates farmers needs/orders and connect them with farm input suppliers
  • Group Selling: M-Farm enables farmers to sell collectively and connect them with a ready market thereby increasing their productivity.

M-Farms’ Solution

The M-Farmer solution has taken advantage of the on-going phenomenal growth of mobile technology across Africa. With access to the Internet yet to have impact on rural farming in these areas, M-Farm has adopted an SMS-based solution for achieving its goal.

Farmers in Kenya simply SMS the number 3535 to get information pertaining to the retail price of their produce, buy their farm inputs directly from manufacturers at favorable prices, and find buyers for their produce. Also, M-Farm has a contract with a local exporter, who buys the produce directly from the farmers using their mobile devices thereby minimizing the transportation challenge. This gives farmers access to a reliable and guaranteed market that enjoys stable year-round prices while eliminating middlemen and lowering transaction costs.

Below is a 2-minute clip on the winning of M-Farm’s IPO48 competition featuring Jamila Abass, a co-founder and CEO of MFarm Ltd (K) and other team members.

 

Access to M-Farm is by subscription with a free 30-day trial for users. For more information on M-Farm, visit here.

Photo Credit: 8Villages.com

One of the new ICT solutions that I have discovered and love to share with agricultural commodity value chain implementers is 8Villages, a mobile platform that links farmers to their communities of peers, input suppliers, and their external business partners.

Below is a short discussion that I had with the Founder and CEO of 8villages Mathieu Le Bras, when I spoke to him on skype from Singapore this week:

Question: A social network app for farmers – what type of farmers are you talking about?

In his response, Mathieu who is an agronomist by profession with over 10 years of experience working with smallholder farmers in the developing nations was very confident of what his ICT solution is all about. His answer was yes, a social network platform for smallholder farmers.

Of course, the follow-up question was what is the literacy level of these smallholder farmers that you are talking about?

With the current focus of 8Villages solution on Asia, beginning from Indonesia, the CEO painted a bright picture about the literacy level of the targeted farmers which is in contrast to the situation in Sub-Saharan Africa. The Global Educational statistics shows that about 48% of Indonesians live in rural villages with around 42% of its labor force in agriculture. The interesting part of this statistics is that, most children in Indonesia have high literacy rate, with around 90% of adults able to read and write. The CEO confirms this that, a very high percentage of the users of the platform are able to read and write and are perfectly using the online platform.

That said, the literacy barrier may be overcome for the users of 8villages mobile platform.

My next concern was about content for the users. Mr Le Bras as an agronomist perfectly understands the importance of quality agricultural content for successful farming by the smallholder farmers. 8Villages according to the CEO, depends on user-generated content by the users of the platform. 8Villages then uses its platform to extracts and share the content with the potential users.

So how is this done?  Mathieu described the system as an online network that combines voice, SMS and the Internet to connect farmers and their partners. The platform allows users – farmers and agribusinesses to generate microblog posts about their products, share brand comparison, give feedback on products and farming techniques, and attend trainings provided by experts.

On the nature of the existing social network among farmers, Mathieu argued that for most of these ICT solutions to work, developers and program implementers need to understand how farmers behave. He explained that smallholder farmers have strong and rich social network within their communities and these networks should be utilized when thinking of communication tools for the farmers.

For more information on why the platform, and the potential benefits to the users, visit 8Villages.

Photo Credit: hsctoolkit.bis.gov.uk

Of all of the new innovations in ICTs — mobile apps and games, open educational resources (OER), and everything else related to ICT for education (ICT4E) — which will be the most important in the next five years?

That’s just one of the questions that the new NMC Horizon Report: 2012 Higher Education Edition aims to answer.  The report was released last month by the New Media Consortium (NCM), an international community of experts in educational technology, and Educause, a nonprofit association which aims to advance higher education by promoting intelligent use of information technology.

The report charts the path of emerging technology innovations, trends, and challenges in higher education from around the world to highlight which have the most potential for impact within the next several years.  It’s the ninth edition of a decade-long research project and over 450 technology and education experts from more than 30 countries have contributed to the research, discussions, and conclusions made in the report since the NMC Horizon Project began in 2002.

What to expect within the next 12 months:

  • Mobile Apps

As the fastest growing component of mobile technology, students are using these for formal and informal learning, teachers are using them to be more efficient and innovative in their classrooms, and both are enabling apps for research, ePublishing, recording, etc.

  • Tablet Computing:

Now preferred in a growing number of classrooms in the developed world, tablets cause less disruption than mobile phones, can be easily stowed and used for field and lab work, and allow one-to-one computing opportunities, usually at an affordable price.

2-3 Years:

  • Game-Based Learning

This has been a fast-growing field within recent years and there are now more studies and reports that offer quantitative data on its effectiveness in education. The report highlights educational gaming as an important tool for fostering student collaboration and engagement in the learning process.

  • Learning Analytics

A valuable tool for teachers, this allows educators to record, process, and track student achievement and engagement. This data can lead to curricula revision, teaching assessments, and improved teaching methodologies.

4-5 Years

  • Gesture-Based Computing

This enables students to learn by doing. From touchscreens to voice interpretation software, students use gesture-based computing to expand their ICT-enabled learning opportunities to encompass embodied learning. The report expects that this technology will soon develop to allow numerous students to use large multi-touch displays for collaborative learning.

  • The Internet of Things

This emerging technology provides online data about an object’s unique characteristics and allows students to record, study, and learn about the physical world around them.  The potential benefits for this technology in education are still being explored.

Key Trends:

  • A rise in student expectations to be able to work and study whenever and wherever they want
  • More advances in cloud-based technologies and applications
  • An increase in student collaboration as project-structures change with new technologies
  • Teachers will continue to be challenged and redefine their roles with the addition of new resources and relationships
  • New models of learning, like hybrid and online learning, will change education paradigms
  • Teachers will use more active and challenge-based learning methods

Photo credit: www.latestdigitals.com

Current Challenges:
  • Traditional Models of teaching are being challenged by new ones enhanced by technology; often the two compete to find a balance that ensures the quality of education.
  •  Research, authoring, and publishing methods are expanding with the growing use of social media in research; many academics still do not accept these new methods as valid.
  • Demand for digital media literacy continues to rise in work and educational settings, however it is still rare in teacher education and training.
  • Emerging technologies are slow to be adopted by teachers on a large scale because of their conflict with traditional teaching models and their self-perceived role and comfort level.
  • University Libraries are challenged with determining how to categorize and support scholarly resources made available through social media and open content, and how to evolve with this growing trend.

For further reading, each section of the report concludes with a list of resources and examples of how the technology is already being used in higher education.  In addition, these and additional resources can be found in an online database on the NMC Horizon Project Navigator website.

 


Western Union and the MTN Group today announced the launch of a mobile money transfer service in Uganda enabling MTN customers to send and receive money via their mobile phones.

cell phone sitting on paper money

MTN and Western Union teaming to promote mobile money in Uganda. (image: file)

This service was announced at a press conference today in Kampala. The Western Union/MTN mobile money transfer service in Uganda will allow users cut down on visits to Western Union branches to pick up cash. Instead, they can “pull” transactions into their MTN Mobile Money accounts.

To access the service customers need an active MTN Mobile Money account.

“Our network of nearly half a million locations, our experience in moving money across borders, and our relationships with the world’s most successful mobile operators such as MTN, ideally position us to introduce many people to cross-border financial services,” Western Union President Diane Scott said.

“We currently have more than 2 million Mobile Money customers, and we continue to grow exponentially. By joining forces with Western Union, our customers can now receive funds directly in their MTN Mobile Money accounts quickly and easily,” MTN Group Chief Commercial Officer Christian de Faria said.

Staff writer

Photo Credit: TodayHeads.com

Remember “Hooked on Phonics“?  The famous infomercials from the 90’s that promised an educational video series could improve children’s reading scores through phonic-based learning methods?

GraphoGAME, a digital-based phonics learning game developed in Finland, is proving to be just as effective for children in low-income countries and as easily accessible through an array of ICT devices.  Developed at the Agora Human Technology Center of the University of Jyväskylä in collaboration with the Niilo Mäki Institute, the game has already been developed in numerous languages — Bantu Languages in Africa, English, Spanish, Chinese, Arabic, Hindi, etc. — to improve literacy where access to sources of high-quality education is limited.

GraphoGAME promotes literacy development by teaching children to form letter-sound associations instead of simply memorizing letter symbols and names.  By using fun and entertaining activities, the child becomes engaged and progresses as the game becomes increasingly difficult according to their progress.  It starts by introducing basic sounds and gradually progresses to complicated sound combinations.

The research team and developers didn’t design GraphoGAME to replace the role of teachers in literacy learning, but instead promote its value as a powerful learning aid when placed in an educational setting where there are challenges to literacy development.  For example, it would be a valuable resource in classrooms where teachers use rote learning — often considered a barrier to meaningful learning and is pervasive throughout the developing world.

The idea for GraphoGAME was introduced in the early 1990’s after Finnish researcher, Heikki Lyytinen, conducted a series of studies on children with dyslexia to identify predictors that could anticipate problems in literacy education.  Using these findings and with funding from the Finnish Ministry of Education and Culture, the research team developed the first version of the educational game for children in Finland, and in 2011 expanded the project to address illiteracy in other countries.

Image from GraphoGAME

To support the expansion, the GraphoGAME developers created a larger project called the Grapho Learning Initiative which is divided into four focus areas: GraphoGAME, GraphoWORLD, GraphoREAD, and GraphoLEARN.

GraphoWORLD is a network of university professors and researchers from around the world who are working together to develop non-commercial technologies to improve literacy.  In order to address each country’s unique orthography (system of spelling) and general learning environment, researchers conduct studies and assessments to support the effictiveness of GraphoGAME within that particular country.

GraphoREAD is a promising research project on eReading platforms and the business models to support them within low-income countries. This is a valuable addition to the GraphoGAME project and the research team is working to ensure that high-quality reading materials are made available for children developing literacy skills.

GraphoLEARN is an entity that will be created after the GraphoREAD research is completed and analysed to support the production of the learning materials identified in the research.

There are a number of videos online that can offer a brief introduction to the format of the games and the educational philosophy behind them.  You can also go to the GraphoGAME website to try some of the games yourself.

Image from TEDEd/YouTube

The ever-growing universal digital library, full of open educational and adaptable resources which allows teachers and students from around the world to pursue opportunities in distance learning, is about to raise its standards for a new initiative due to be launched in April —TED-Ed.  TED, a nonprofit famous for its award-winning TED Talks devoted to “Ideas Worth Spreading”, introduced its new “Lessons Worth Sharing” project last week and, according to its short introductory video, aims “to capture and amplify the voices of great educators around the world.”

By connecting exemplary teachers with animators, TED-Ed will produce videos — no longer than ten minutes each — capable of explaining innovative, thought-provoking, and challenging ideas through easy-to-understand visual representations.  The TED-Ed initiative promises to bring the same high production values used in its TED Talks to create a valuable collection of resources, coupled with new interactive leaning tools, to improve education quality and promote life-long learning — that is, primarily in the US and English-speaking world.

Photo credit: Computers4Africa

So what does this mean for teachers from non-English speaking countries and the developing world?  Though TED has not announced plans to translate each of the TED-Ed lessons, its TED Open-Translation Project has already provided subtitles and interactive transcripts for many of its TED Talks — currently 86 languages and counting — so it’s possible they’ll do the same for the lessons.   And if they do and plans are made to use TED-Ed lessons within a foreign context, could the content be ‘open’ and easily adaptable to be considered culturally appropriate for different educational settings?

These are some of the questions that the ICT4E sector and the international teaching community need to start asking.  With so much of the focus being placed now on how using digital devices like tablets and mobile phones will affect the delivery of educational information, the importance of improving the quality of that information is easily being pushed aside.  So who better to raise the standards for this quality than organizations like TED who have made so many complex ideas like nuclear fusion and how cymatics work to be understandable and relatable, presented by experts in their given fields and directed to a diverse audience of learners.

This is a revolutionary idea when considering the ways in how to raise the poor quality of education in many schools throughout the developing world.  Imagine how students’ — and teachers’ — comprehension of STEM subjects could be improved if the teacher-centered pedagogy used in many classrooms today was enhanced by supplementary videos explaining new ideas through understandable terminology and images for visually-inclined learners.  Moreover, imagine the effects it could have on teachers’ teaching methods if they adopted some of the conversational-style approaches used in the videos.

Image from Khan Academy

Though TED-Ed’s teaching style and delivery method is unique, Innovators and creative thinkers in distance learning have already been exploring this territory of open educational resources (OER) and organized open education since the 90’s.  The Khan Academy, a not-for-profit organization created in 2006 that has pioneered the free open educational video platform, has already created a vast digital library of over 3,000 online videos covering various subjects, though mainly in the maths and sciences.  Having delivered over 131 million lessons, Salman Khan, founder of the Khan Academy, has impressive goals for the organization and aims to create “the world’s first free, world-class virtual school where anyone can learn anything.”  Given Salman Khan’s stature and notoriety in the field of distance learning, he was featured as one of the speakers at the TED 2011 conference when the TED-Ed initiative was first announced to the TED community.

So what can we expect from TED-Ed in the future?  If its lessons are as interesting, well-structured and thought-provoking as TED talks, students are in for a pleasant change from their usual lecture-based lessons. And hopefully TED-Ed will have a similar approach to that of the Khan Academy to contribute to and enhance the universal digital library while considering what it means for education quality around the world.

 

Last week, amidst reading the various blogs and tweets for Open Education Week, I came across several acronyms that were unfamiliar.  Terms like Edupunk and Aakash are just a few of the terms that you simply have to “be in the know” in order to know.

Anyone new to the field of information and communication technology for education (ICT4E) might be a little overwhelmed at first by the plethora of acronyms, terminology, and program and developer names that pervades internet searches and tweets.  Whether you’re an education professional looking for new opportunities to use technology in a development project, or a seasoned ICT4D veteran exploring the new advances being made in open education, there’s usually a new term that pops up, sometimes coined at a recent conference, that might be unfamiliar.

And to complicate things further, common ICT4E terms are also used among the wider national education community, as well as those focused on content more than devices, devices more than quality, quality more than technology, and a small community of professionals that have enough experience to be able to see the overall picture.

So to offer some clarification, here are some ICT4E terms you should know:

  • ICT4E: Information and Communication Technology for Education

Self-explanatory acronym though, within the Twittering world, it has taken on several other forms such as ICT4Ed, ICT4Edu, Edtech and Edutech.  A recent blog from ICTWorks set out to clarify what is the most appropriate hashtag and it seems a consensus has been reached for ICT4E — at least for now.

  • mLearning

mLearning is the use of mobile technology for education — both formal and informal.  Though eLearning — using technology for in-class or distance learning purposes — could technically encompass mobile technology, mLearning has been gaining more ground and becoming increasingly popular with the rise of mobile phone saturation throughout the world — estimated at over 5.3 billion mobile subscribers during the UNESCO Mobile Learning Week — that it has created its own category and is the subject of many ICT4E debates.

Commonly referenced and debated in the ICT4E sector, this controversial project has received a lot of praise and criticism for it’s device-based initiative which has introduced over 2.5 million laptops to schools throughout the developing world.

  • Aakash

The new competitor to OLPC (though that too could be debated since OLPC has expressed support for this new project), this name tends to stir up some excitement among ICT4E advocates.  Aakash is a new tablet computer recently priced at around $35 and already being used in public schools in India.

  • BYOD: Bring Your Own Device

 Bring Your Own Device is simply that — students using their own digital devices in the classroom.  With many digital devices to choose from such as eReaders, tablets, and mobile phones, computers are no longer considered the only or best option.  BYOD is a concept being explored more in connection to mLearning though there are few examples of it already being applied in a development context.

OERs are course and learning materials which can easily be accessed for learning, teaching and research purposes via the internet.  Covered under open licenses, these resources can be modified and updated by multiple users creating “living” resources — those that have the ability to grow and adapt with new innovations, historical events, new perspectives, etc.

  • OCW: Open CourseWare

OCWs are a type of OER.  Simply put, they are the learning materials or collection of OERs organized to serve as course content.  These, like OERs, are openly licensed and can be reused and reshaped so that they can be introduced in various educational settings.

  • FOSS: Free and Open Source Software

Software that is both free and open source; an important tool for developing OERs.

  • MOOC: Massive Open Online Course

Similar to OCWs except that their pedagogical theories and student base differ. A relatively recent innovation in online course development, MOOCs are founded on the theory of connectivism and facilitate learning through teacher led discussions and presentations and developing peer-to-peer networks between students.

  • Badges

A digital representation equivalent to a certificate or diploma, badges certify the specific skills a student has attained and the quality of the instruction that they received from a specific educational institution.

  • Image from www.cooltownstudios.com

    Crowdsourcing

A distributed problem-solving and production process that involves outsourcing tasks to a network of people, usually many and undefined, and a great strategy for collaborating with other teachers and educational professionals.

And in the spirit of open education and crowdsourcing, feel free to share any other essential, humorous, or baffling ICT4E terminology you’ve come across.

Photo Credit: OCW Consortium

This week, the online global education community is kicking off the first ever Open Education Week, an event initiated by the OpenCourseWare Consortium to raise awareness to the increasing number of possibilities within this field.  This growing movement is poised to change the way that education is viewed, both in the developed and developing world.  It has the potential to revolutionize the field of international education development with the increase of connectivity in regions that, until only recently, were limited to outdated and ineffective learning resources and teaching methods.

However, some of these new exciting opportunities and tools that are being developed are set amidst unfamiliar computer programming lingo, an increasing number of acronyms, and a community of open education advocates with various ideologies.  So to demystify some of these, let’s imagine for a moment that we want to create a digital classroom for distance learning, targeted to students in a remote area of a developing country.  First, we’ll need to develop our course materials and the body of information that we plan to teach:

  • OER: Open Educational Resources

 

Photo credit: UNESCO, Author: Jonathasmello

OERs are the various course and learning materials that are being made available in the digital classroom which can easily be accessed for learning, teaching and research purposes.  Covered under open licenses, these resources can be modified and updated by multiple users creating “living” resources — those that have the ability to grow and adapt with new innovations, historical events, new perspectives, etc.

OERs make up what some have termed a “universal virtual library”, and where best to start developing the resources for our digital classroom than there.  A great example of this is Wikieducator, an international online community project that facilitates collaboration between educators.

So once we’ve chosen and developed what we’ll teach, how will that content be represented and organized as a course or curriculum?  That’s where OCWs come in.

  • OCW: Open CourseWare

OCWs are a type of OER.  Simply put, they are the learning materials or collection of OERs organized to serve as course content.  These, like OERs, are openly licensed and can be reused and reshaped so that they can be introduced in various educational settings.

And that’s great for us since we want input from other teachers, education professionals, and the students themselves so that, ideally, they will have the most current information taught through the most effective teaching methods.  Some OCW programs such as MIT OpenCourseWare and the Khan Academy have already taken great strides in perfecting this model.  However, OERs by themselves cannot monitor the learning process or offer accreditation to students.  We need to develop something that shows that our students have fulfilled the learning requirements and have acquired new skills.

  • Badges:

Photo Credit: Mozilla Open Badges website

Badges are the big new thing in Open Education and are still in the early stages of development.  An idea that was explored during the 2010 Mozilla Learning, Freedom and the Web Festival, the badges would certify the specific skills a student had attained and the quality of the instruction that they received.  According to a recent New York Times article, a few major companies like Microsoft are already using a badge system to certify that their employees have received technical training.

Once we’ve developed our own badge system, perfected our curriculum, and established ourselves as a credible source for quality education, it’s time to think bigger.

  • MOOC: Massive Open Online Course

MOOCs are similiar to OCWs except that their pedagogical theories and student base differ.  A relatively recent innovation in online course development, MOOCs are founded on the theory of connectivism and facilitate learning through teacher led discussions and presentations and developing peer-to-peer networks between students.  The potential class size for these courses can be staggering.  Several well-known examples at Stanford have exceeded 100,000 registered students, though only a fraction of them actually completed the courses.

Even though some MOOCs and badges are being monetized, we will of course try to keep our lessons free, though there is some argument for charging small fees to motivate students to complete the course.  But many questions remain: How will these new materials with the outsourcing — or crowdsourcing — of teachers affect the local education system?  Are the skills and information being taught that of which this particular population actually need and culturally relevant?  How will it prepare students for jobs already available in this cultural context?  A lot of these new innovations still have yet to be developed to suit the needs of the developing world but, with the right amount of cultural sensitivity, research and collaboration, there are many exciting potential advantages to come.

 


Photo Credit: Daniel Katz

Access to timely and accurate data on farmers, their households and farm activities is key for policy, decision-making and quality control for development organizations, national governments, funding agencies, project implementers, field workers, researchers and farmers themselves. Demographic data (past and present) on farm households such as land sizes, assets owned, types of soil, weather conditions, gender distribution, literacy levels, types of commodities being produced, diseases and pest, facilities for storage, among others are critical.

Unfortunately, the current status of data on developing nations’ agriculture at both local and global levels is far from reaching the stage at which policy makers can confidently draw upon for intervention due to the complexities with collection and analysis. The result is inefficient flow of resources into these communities due to under or over investments. The challenge is both socio-technical – human skills to design the necessary protocols for capturing these data as well as technological tools to facilitate the management (capturing, analyzing, sharing, etc.) of the data.

For far too long, exploring the role of ICT solutions to support value chain actors in this area have been ignored even though viable and potent ICT tools are in the market. ICT solutions identified in this component could be used in building and generating electronic forms for data gathering, help in timely access to data, facilitate easy and accurate data analysis, ensure monitoring of field activities, help in tracing of goods from farm gate to consumers, and assist in certifying commodities for quality assurance.

Photo Credit: Uganda App Lab

Potential ICT Solutions to Facilitate Agricultural Policy & Decision-Making

These are ICT solutions that facilitate accurate data capturing, analysis and sharing on farmers, their farm sizes, assets, commodities and other key identifications for enhancing policy decisions making by field staffs, governments, investors, donors and feedback into research and development. Examples of apps identified in this category includes iFormBuilder, a mobile platform for building robust forms, offline data capturing and managing data and users from any browser with the iPhone, iPod touch, or iPad with image and audio recording, GPS and mapping functionality, etc; Mobenzi Researcher that uses simple feature phones to high-end handsets to provide a tried and tested solution to enhance field research and data collection; and PoiMapper, a mobile point of interest data collection and sharing solution for affordable GPS-enabled feature phones that can make agricultural fieldwork more efficient and reliable through planning and monitoring of field activities.

Potential ICT Solutions for Traceability and Quality Assurance

These are ICT solutions to facilitate data gathering on farmers, their fields and specific information on their commodities for traceability and quality assurance. Examples include SourceTrace, a suite of ICT applications including traceability module that records delivery and transaction of data both entered manually into mobile device as well as from GPS, RFID and bar code readers, certification module for internal agricultural monitoring processes of agricultural commodity firms such as Fair Trade, and processing module that automates the capture of valuable information on the various light industrial processes of any agricultural commodity; Reliable Information Tracking System (RITS), a new coffee traceability program that is helping coffee growers become more efficient, reliable, and quality-focused by tracking deliveries of coffee from each member down to the details of what coffee varietals and quality score each lot of coffee receives; and, Integrating ICT for Quality Assurance and Marketing, a project that helps to build an internal control system for inspectors of Organic Producers and Processors Association of Zambia (OPPAZ) for quality assurance and thereby improve the value of the products for increased income.

In summary, ICTs have great potential for data management within the agricultural value chain for increased agricultural growth. Improved data used will influence how research is conducted and subsequently the kind of policy decisions that need to be made for funding and investment. For detailed information on ICT solutions for monitoring, evaluation and quality assurance visit ICT4Ag Database by GBI for an interactive experience and feedback.

Photo credit: DIPTENDU DUTTA/AFP/Getty Images

With International Women’s Day this week on March 8th, several prominent aid and research organizations working in the developing world are releasing some fascinating new reports that explore how ICTs and gender impact each other.  Creating a startling picture of the realities of gender disparities within an already gaping digital divide, the reports identify a technical literacy barrier that is hindering development for women at the Base of the Pyramid (BoP), or those living on less than $2 a day.  It’s currently estimated that a woman is 21% less likely to own a mobile phone than a man, and of the large population of women that do not own phones, one report revealed that 22% of them claimed the main reason was that they “wouldn’t know how to use it”.

Termed the “mobile phone gender gap” by mWomen, a GSMA program which aims to reduce it by 50% by 2014, this inequality has recently been examined from several different perspectives: four case studies from India compiled by the Cherie Blair Foundation and International Center for Research on Women (ICRW); a research report that offers a narrative glimpse into the lives of BoP women, framework for designing business models and a set of research tools for conducting studies, all created by the GSMA mWomen Program; and an analysis of the results of several ICT gender focused projects conducted by the Swedish Program for ICT in Developing Regions (Spider).

Photo credit: Kelake.org

1. Connectivity: How Mobile Phones, Computers, and the Internet Can Catalyze Women’s Entrepreneurship

The Cherie Blair Foundation, a charity that supports women entrepreneurs in developing and transition countries, and the International Center for Research on Women (ICRW), an organization which aims to improve gender equality and reduce poverty in the developing world, teamed up to investigate four initiatives to target women and observe how technology is helping them to earn income.  Through in-depth research and analysis, the report focused on the opportunities and challenges involved to reach several important conclusions:

  • Women will utilize ICTs to develop their businesses when the technology is available to them, increasing both efficiency and social status
  • Out of all of the ICTs currently available, mobile phones are the first choice for successful business ventures, with portability and adaptability being the biggest draws
  • Women using ICTs in their businesses promote their benefits amongst friends and family
  • Out of the few thousand women highlighted in the case studies, there’s still a lot of potential — perhaps half a billion women — for new entrepreneurial ICT initiatives in India
  • Partnerships are essential between the public, for-profit, non-profit and social enterprise sectors
  • Sustainability is still a challenge but could be improved with more multi-sectoral partnerships bolstered by the economic and social benefits
  • ICTs are attracting women entrepreneurs for their efficiency and time-saving capabilities though exploring new ways the technology can foster support and communication between women entrepreneurs still needs to be explored

Photo Credit: Reuters

2. Portraits: A Glimpse into the Lives of Base of the Pyramid Women

To provide a snapshot of what life is like for women living on under $2 a day, the GSMA mWomen Programme, a global public-private partnership between the worldwide mobile industry and the international development community including USAID and AusAID, created Portraits, a summarized version of a larger research report entitled Striving and Surviving – Exploring the Lives of Women at the Base of the Pyramid, due to be released on March 8th.  To represent the mass of quantitative data and information collected from one-on-one interviews during the research, the report presents 8 fictionalized life stories from varying regions, each representing a different important aspect of life for BoP women.  Here are just a few of the statistics that can be found in the report:

  • Of the women who did not want to own a mobile phone, 22% said the main reason was that they “wouldn’t know how to use it”
  • 74% of women chose “a good education for my children” as one of their top five life priorities
  • 83% of the women surveyed had not completed secondary education. 31% had no formal education at all
  • 47% of mobile owners said they had been taught to use their handset by their husbands, while 34% had taught themselves
  • Only 6% of the women in the study knew (without being prompted) you could access the Internet through a mobile phone, and less than 2% had done so.  Amongst young BoP women ages 16-21, 39% had some awareness of the mobile web, though only 5% had used it

Photo credit: womendeliver.org

3. Empowering Women Through ICT

Summarizing the outcomes and conclusions from five different projects using various ICT platforms carried out in five countries — Bolivia, Kenya, India, Rwanda, Vietnam, and Bolivia — this report created by the Swedish Program for ICT in Developing Regions (Spider) focuses on how ICTs can support women in the rural regions of the global south.  By observing the impacts of the projects on the lives of each group of women, Spider researchers considered the implications of how technology affects gender just as gender affects technology through:

  • 2 projects in Bolivia: one focusing on empowering female community leaders and one supporting victims of domestic violence through a safe virtual environment
  • A project carried out in both Kenya and India which focused on ecological sustainability, diversification of livelihood, basic training in ICT through self-help groups
  • A project in Rwanda which explored the use of ICT in small business development through a women’s basket weaving initiative
  • A research project in Vietnam which considered gender in the development of ICT.

 

Copyright © 2020 Integra Government Services International LLC